The Vitale Lab develops innovative technologies to study, diagnose, and treat disorders of the nervous and neuromuscular system. To accomplish our goal, we adopt a multidisciplinary approach combining fundamental studies on emerging nanostructured materials with the development of ad hoc manufacturing processes to integrate these materials into functional devices. We are interested in applications span from novel multimodal interfaces from monitoring and manipulating individual cells in microscale neural circuits, to large-scale epidermal electronics for mapping and modulating region-wide networks.
Our ultimate goal is to translate our work to patient care and improve outcomes.

 

Novel materials

N. Driscoll, A. G. Richardson, K. Maleski, B. Anasori, O. Adewole, P. Lelyukh, L. Escobedo, D. K. Cullen, T. H. Lucas, Y. Gogotsi, F. Vitale. Two-Dimensional Ti3C2 MXene for High-Resolution Neural Interfaces. ACS Nano 12(10), 1010419-10429, 2018.

F. Vitale, S. R. Summerson, B. Aazhang, C. Kemere, M. Pasquali. Neural stimulation and recording with bidirectional, soft carbon nanotube fiber microelectrodes. ACS Nano, 9 (4): 4465–4474, 2015.

 

Multimodal interfaces

N. Driscoll*, R. E. Rosch*, B. B Murphy, A. Ashourvan, R. Vishnubhotla, O. O Dickens, A.T. C. Johnson, K. A. Davis, B. Litt, D. S. Bassett, H. Takano, F. Vitale. Multimodal in vivo recording using transparent graphene microelectrodes illuminates spatiotemporal seizure dynamics at the microscale. bioRxiv, 2020.

 

High-resolution epidermal electronics

B. Murphy, P. J. Mulcahey, N. Driscoll, A. G. Richardson, G. T. Robbins, N. V. Apollo, K. Maleski, T. H. Lucas, Y. Gogotsi, T. Dillingham, F. Vitale. A gel-free Ti3C2Tx-based electrode array for high-density, high-resolution surface electromyography. Advanced Materials Technologies 2000325. 2020